Übungstest

Dieser Übungstest besteht aus 8 Fragen zu Exponentialfunktionen.
Die Schwierigkeitsstufe ist leicht bis schwer.
Es können bei jeder Frage eine oder mehrere Antworten korrekt sein, aber nie alle.

Test als PDF ausgeben

Ein Patient nimmt um 900 eine Tablette von 1,5g  und um 1500 eine weitere Tablette eines bestimmten Medikaments ein. Dieses Medikament besitzt eine biologische Halbwertszeit von 6 Stunden. Wie viel Gramm wirksamer Substanz befinden sich um 1200 im Körper des Patienten?

Nr. 1459
Lösungsweg

5 erreichbare Punkte

Mit Hilfe der C–14 Methode lässt sich das Alter eines organischen Fundes berechnen. Das Isotop C–14 reichert sich in Pflanzen, Menschen und Tieren durch den Stoffwechsel zu Lebzeit auf einen bestimmten Wert an und zerfällt nach deren Tod mit einer Halbwertszeit von 5730 Jahren. Wie groß war eine C–14 Menge von derzeit 21g vor 3000 Jahren?

Nr. 1434
Lösungsweg

5 erreichbare Punkte

Um das Alter von Tierskeletten zu bestimmen, verwendet man die C14 Datierung. C14 ist radioaktiv und zerfällt mit einer Halbwertszeit von = 5760 Jahren. Leiten Sie den Zusammenhang zwischen der Zerfallskonstanten \lambda und der Halbwertszeit her.  Ist ein Skelett 41473 Jahre alt, beträgt sein C14-Anteil nur noch 6,8 Promille  Nach wievielen weiteren Jahren werden nur noch 5 Promille vorhanden sein?

Nr. 1430
Lösungsweg

5 erreichbare Punkte

Eine logarithmisch geteilte Stromskala für den Bereich  0,05mA \leq u \leq 80mA soll auf einer Länge von L = 14cm dargestellt werden. Wo liegt i1 = 12 mA genau?

Nr. 1481

5 erreichbare Punkte

Ein Kondensator wird von 30V auf 150V aufgeladen. Die Kondensatorspannung nähert sich dabei asymptotisch (exponentiell) dem Endwert von 150V.  u(t) = 150- 120 \cdot e^{-\frac{t}{\tau}}

Nach 5ms beträgt die Spannung 120V. Ab wann beträgt die Abweichung vom theoretischen Endwert weniger als 1%?

Nr. 1454
Lösungsweg

5 erreichbare Punkte

Ein Patient nimmt ein Medikament ein, dessen „ biologische Halbwertszeit “ acht Stunden beträgt. Der Patient nimmt um 6°° eine Dosis von 40mg des Medikaments, um 11°°  30mg und um 15°° 50mg zu sich. Angenommen die zeitliche Abhängigkeit der Substanz wird beschrieben durch n(t)= 2^{-\frac{t}{8}} \cdot (40 \cdot \sigma (t) +30 \cdot 2^{\frac{5}{8}} \cdot \sigma (t-5)+80 \cdot 2^{\frac{9}{8}} \cdot \sigma (t-9)) - wieviel Milligramm wirksamer Substanz hat der Patient um 20°°in sich?

Nr. 1468
Lösungsweg

5 erreichbare Punkte

Ein Patient nimmt ein Medikament ein, dessen „ biologische Halbwertszeit “ acht Stunden beträgt. Der Patient nimmt um 9°° eine Dosis von 10mg des Medikaments , um 13°°  4mg und um 18°° 8mg zu sich. Bedenkt man, dass die Formel n(t)= 2^{-\frac{t}{8}} \cdot (10 \cdot \sigma (t) + 4 \cdot 2^{\frac{4}{8}} \cdot \sigma (t-4)+8 \cdot 2^{\frac{9}{8}} \cdot \sigma (t-9)) die zeitliche Abhängigkeit der wirksamen Substanz beschreibt - wie viel Milligramm wirksamer Substanz hat der Patient um 24°° in sich?

Nr. 1464
Lösungsweg

5 erreichbare Punkte

Von einem exponentiellen Zunahmevorgang einer Population kennt man den Startwert  n(0) = 36. Nach 24min beträgt der Populationswert 49. Berechnen Sie die Wachstumskonstante λ

Nr. 1421
Lösungsweg

5 erreichbare Punkte


NEWS

Die Warm-up Kurse sind ein kostenloser Service für Aufgenommene und Studierende der FH Technikum Wien.

Dieser steht Ihnen jeden Sommer zur Verfügung! Nützen Sie ihn zur Festigung von Grundkenntnissen und Wiederholung von Inhalten zu den Fächern: Mathematik, Physik, Elektrotechnik, Informatik, Englisch und Deutsch.

Informationen und Kontaktdaten finden Sie unter:
Warm-up 2017

Die nächsten Qualifikationskurse starten im Februar 2018. Informationen zu dem generallen Ablauf und Kontakt finden Sie auf unserer Website.

weitere News

Wussten Sie schon?

Wenn Sie einen Benutzer haben, vergessen Sie nicht, sich rechts oben anzumelden. Nur dann wird Ihr Lernfortschritt gespeichert.